Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biosens Bioelectron ; 204: 114067, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1670217

ABSTRACT

SARS-CoV-2 is quickly evolving from wild-type to many variants and spreading around the globe. Since many people have been vaccinated with various types of vaccines, it is crucial to develop a high throughput platform for measuring the antibody responses and surrogate neutralizing activities against multiple SARS-CoV-2 variants. To meet this need, the present study developed a SARS-CoV-2 variant (CoVariant) array which consists of the extracellular domain of spike variants, e.g., wild-type, D614G, B.1.1.7, B.1.351, P.1, B.1.617, B.1.617.1, B.1.617.2, and B.1.617.3. A surrogate virus neutralization on the CoVariant array was established to quantify the bindings of antibody and host receptor ACE2 simultaneously to spike variants. By using a chimeric anti-spike antibody, we demonstrated a broad binding spectrum of antibodies while inhibiting the bindings of ACE2 to spike variants. To monitor the humoral immunities after vaccination, we collected serums from unvaccinated, partial, or fully vaccinated individuals with either mRNA-1273 or AZD1222 (ChAdOx1). The results showed partial vaccination increased the surrogate neutralization against all the mutants while full vaccination boosted the most. Although IgG, IgA, and IgM isotypes correlated with surrogate neutralizing activities, they behave differently throughout the vaccination processes. Overall, this study developed CoVariant arrays and assays for profiling the humoral responses which are useful for immune assessment, vaccine research, and drug development.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , ChAdOx1 nCoV-19 , Humans , Immunity, Humoral , Protein Array Analysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
Front Cell Infect Microbiol ; 11: 564938, 2021.
Article in English | MEDLINE | ID: covidwho-1468327

ABSTRACT

T-cell reduction is an important characteristic of coronavirus disease 2019 (COVID-19), and its immunopathology is a subject of debate. It may be due to the direct effect of the virus on T-cell exhaustion or indirectly due to T cells redistributing to the lungs. HIV/AIDS naturally served as a T-cell exhaustion disease model for recognizing how the immune system works in the course of COVID-19. In this study, we collected the clinical charts, T-lymphocyte analysis, and chest CT of HIV patients with laboratory-confirmed COVID-19 infection who were admitted to Jin Yin-tan Hospital (Wuhan, China). The median age of the 21 patients was 47 years [interquartile range (IQR) = 40-50 years] and the median CD4 T-cell count was 183 cells/µl (IQR = 96-289 cells/µl). Eleven HIV patients were in the non-AIDS stage and 10 were in the AIDS stage. Nine patients received antiretroviral treatment (ART) and 12 patients did not receive any treatment. Compared to the reported mortality rate (nearly 4%-10%) and severity rate (up to 20%-40%) among COVID-19 patients in hospital, a benign duration with 0% severity and mortality rates was shown by 21 HIV/AIDS patients. The severity rates of COVID-19 were comparable between non-AIDS (median CD4 = 287 cells/µl) and AIDS (median CD4 = 97 cells/µl) patients, despite some of the AIDS patients having baseline lung injury stimulated by HIV: 7 patients (33%) were mild (five in the non-AIDS group and two in the AIDS group) and 14 patients (67%) were moderate (six in the non-AIDS group and eight in the AIDS group). More importantly, we found that a reduction in T-cell number positively correlates with the serum levels of interleukin 6 (IL-6) and C-reactive protein (CRP), which is contrary to the reported findings on the immune response of COVID-19 patients (lower CD4 T-cell counts with higher levels of IL-6 and CRP). In HIV/AIDS, a compromised immune system with lower CD4 T-cell counts might waive the clinical symptoms and inflammatory responses, which suggests lymphocyte redistribution as an immunopathology leading to lymphopenia in COVID-19.


Subject(s)
COVID-19 , HIV Infections , Adult , Anti-Retroviral Agents , CD4-Positive T-Lymphocytes , HIV Infections/complications , HIV Infections/drug therapy , Humans , Lymphocyte Count , Middle Aged , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL